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Since series (13) converge absolutely for all e>ea and b,<b*, it fol lows that when 
e--00, I*- 0, ys - 0 (8 = 1, 2, 3). This means that we can always choose the initial position and 
initial angular velocity of the Hess-Appel'rot gyroscope in such a manner, that its motion 
will tend, as time increases without limit, asymptotically to rotation about a horizontal 
axis, Such motions are called asymptotically pendulum-like motions. 

We note that the class of asymptotically pendulum-like motions of the Hess-Appel'rot 
gyroscope described by relations (13) does not include the Hess solution as a special case. 
Indeed, the latter solution for the system of differential equations (6) is characterised by 
the invariant relation t,= 0. By virtue of the first equation of this system we find that 
if the relation zl=O holds at the initial instant, it holds at any other instant. For the 
class Of asymptotically pendulum-like motions of the Hess-Appel'rot gyroscope and constant b, 
is not zero, and therefore zl#O. 
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INTERACTION OF THIRD-ORDER RESONANCES IN PROBLEMS 
OF THE STABILITY OF HAFIILTONIAN SYSTEMS* 

L.G. KHAZIN 

The problem of the stability of the equilibrium state of a neutral 
Hamiltonian systems (all eigenvalues of the linearization matrices are 
purely imaginary) is considered. A stability criterion is obtained for 
systems with several third-order resonances. 

1. Formulation of the problem. We shall study the stability of the equilibrium 
state of an autonomous Hamiltonian system of equations 

i,’ = aH (I. ?I) Ya' = - m (2. Y) - ; 
*Y, al 1 a=i,...,N (1.1) 

If (2, Y) = H* (I, Y) + H, (I, Y) +=... 
I = (II, . . ., IN); Y = (Y,. ., YN) 

Here H~(=,~) denotes the homogeneous k-th degree polynomials, 1' is the linearization 
matrix of the system, (l.l), SF) are the eigenvalues and Rek(F) = 0. 

We shall use the following definitions. 
The system 

*Prikl.Matem.Mekhan.,48,3,494-498,1981984 
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T’ = F (I), F (0) = 0, dim F = dim z = 2N 
h (T) = iioj, j = 1, . ., N 

has a resonance if an integral vector k=(k,,.. ., kn) exists such that (k,@)= ZkjUj=O. The 

number Ikl= Z lkjl will be called the order of the resonance and the vector k the resonance 
vector. If kj are relatively Simple, then Ikl has a minimum value. 

TWO resonances will be called independent if their resonance vectors are linearly indep- 

endent. TWO resonances are tied to m frequencies if their resonance relations contain exactly 
m general frequencies with non-zero components of the resonance vectors. 

Below we study the stability of the equilibrium state of system (1.1) when it contains 
exactly two third-order resonances; we assume that there are no multiple roots &,#A, if a#j. 
No other constraints are imposed on the system. The co-dimensionality of the systems in 
question out of all Hamiltonian SyStemS With Reh= 0 , iS equal to two. 

Let us formulate the results used in the present paper. 
If system (1.1) has exactly one third-orderresonance,then the following equivalent 

assertions hold /I, 2/. 

Theorem la. The equilibrium state of the model system is unstable if no component of its 
resonance vector changes its sign; otherwise the system has a positive quadratic integral 
which guarantees the stability. 

Here and henceforth by the model system we mean system (1.1) normalised to the third- 
order inclusive, with the higher-order terms neglected. 

Theorem lb. The equilibrium state of the model system is unstable if and only if its 
solutions include an increasing solution in the form of an invariant ray (for the definition 
of the incariant ray see /2/J. 

The following theorems hold for the complete initial system in the cases in question. 

Theorem S. The stability of the model system implies the stability of the initial system 
up to the order k,@,>3 is the order of the lowest resonance; the resonances are assumed to 
be mutually independent). 

Theorem NS. The instability of the model system implies the Lyapunov instability of the 
initial system. 

The basic result of the present paper can be formulated as the following theorem. 

Theorem 1. The model system is unstable if and only if the components of at least one 
resonance vector do not change their signs; otherwise the stability is guaranteed by the 
presence of a positive quadratic integral. 

Notes. lo. It is only the instability in the systems in question that is of course 
character and does not depend on the presence of higher-order resonances in the system. 

2O. The presence of an increasing solution in the form of an invariant ray is not a 
necessary condition for the instability of the systems in question. 

The proof of Theorem 1 is given in Sect.2. Theorem NSis proved in Sect.3, and the proof 
of theorem S is standard /3/ and therefore not given here. 

Note that we can consider, without loss of generality, systems with the minimum possible 
number of degrees of freedom so that every frequency enters at least one of the resonance 
relations with non-zero component of the resonance vector. 

2. Investigation of the model systems. We use the non-degenerate canonical 
polynomial transformation to reduce the Hamiltonian (1.1) to its normal form up to and includ- 
ing the third-order terms, and neglect the higher-order terms. The resulting Hamiltonian 
describes the model system. 

Proof of Theorem 1 for the case of unlinked resonances. In this case the Hamiltonian 
of the model system consists of the sum of two independent Hamiltonians, and the system 
splits into two independent subsystems each containing a single third-order resonance. This 
implies the validity of Theorem 1. 

Proof of Theorem 1 for the case of the resonance linked to a single frequency. In this 
case the theorem holds for the general systems of differential equations /4/. However, in 
the case of general systems the two-frequency 1:2 resonance always leads (without additional 
degeneration) to instability, although this is not true for a Hamiltonian system. For a 
complete proof of Theorem 1 we must sort out two cases, specific for Hamiltonian systems only 

1". H*l= --P1+ 2P* + 4P, + WG7Ep,"p,os (cpl f Q,) + 
2WGz-co3 W)s - 2%) 

2". HA,* = ZojPj + 2Al/plap,cos ((F2 - 2%) T =WP,p,P, PPS (rp1 -I- 'Pa + 90 

Here pG and oa are canonical polar coordinates. 
We note that the linking takes place in both cases with respect to the low frequency of 

the non-essential resonance. 



The instability of a system with the Hamiltonian lIil' follows from the existence of an 
increasing solution in the f-rm of an invariant ray 

PI = 
4(2A' f 82) 

b(t), p*=$b(t), 
8A* 

A* 6' EZ IB( b'i* 

The instability of system with the Hamiltonian H&t is proved in the same manner. 

In the case of general systems (with additional degeneration) the situation is much 
complicated, since generally speaking an increasing solution in the form of an invariant 
may not materialise. 

Proof of Theorem 1 for the case when the resonances are linked with respect to two 

more 

ray 

frequencies. Two-frequency and three-frequency resonances. Let 1 q 1 <I o,j<lo,~. We canassume 
without loss of generality that Io11 =I when 1 as/ = Z,[o,I =3. When H is indefinite, three 
cases are possible apart from sign: H* = --PI - 2~* + 3~,, 2) H, = ~1 - 2~* T 3~3, 3) H, = P, i 2p, - 3p, 

It can be confirmed that in cases 1) and 3) the instability follows from the existence of 
an increasing solution in the form of an invariant ray. Let us carry out the proof for the 
more complicated case 2). We have 

H = PI - 2p, + 3p, i 2F, (P. $1) i- 2F* (P, 'i'*) 12.1) 

*I = 9* + 291, d* = 9* f 9* - 91. F, = I/~xcos% 
F, = v"p1p2p3 cos qz, G, = lffi sin +I9 G* = 1/G sin 9* 
pl' = 2 (.-G, + G,), p,' = -2 (G, -7 G*), P*' = -2G* 
ql' = (--F, (PI f 4p*) -F 2F* (2~* - &)V(P,P*) 
+*' = F, (2p, - pI)I(pIp*) + 2F* (I/P, - I/P* - I/P*) 

and (I = PI - 2p*-i 3p*, K = N -I are integrals of the system (2.1). 
We will seek the solution of the system in the form of a ray on the invariant surface 

I=K=O, I 9 =-.’ 7.1 B I 
:.I ’ $t = - 7 1 1 k + 3P*) P*== 2 

and for the remaining variables we obtain 

PI' = @V/21 A I PI - VI B I vplps,vP, f 3P* 
P3' = r/z I B I v-PIP3 k f 3P*) 

(2.2) 

We seek the increasing solution in the form P3 (t) = kP,(t),k)O. Such a solution exists, 
provided that a positive solution of the equation 2 IA I = ~B~(k+l/k) exists. Thus when 

J~l~-l~l, the increasing solution has the form 

There is no increasing solution 
in this case system (3.2), and hence 

Let us put 

in the form of a ray when IA l<lB( . We shall show that 
(3.1), are both unstable. 

2A* + B* 
F=P,igYP*- 

If dF/d:> 0, then F is a Chetaev function of system (2.2) and the instability is proved. 
We note that the Chetaev function constructed guarantees the instability of system (2.1) 

irrespective of the sign of IA \-1B). 

Two three-frequency resonances. Let 

k = (6. k*, k*, o), 1 = (0. J*, [*. II), I kf I = I Zj+l ( = 1 
be the resonance vectors of the system. If a change of sign occurs amongst the non-zero 
components of both vectors, then a positive vector p = (p,,p*, pa, p,), pj > 0 exists such that 

(p, k) = (p. 1) = 0 and the positive quadratic integral I= (p, 1) /5/ in this case guarantees the 
stability of the model system. 

Let us now assume that there is no change of sign amongst the components of one of the 
resonance vectors (e.g. k). Then l*l* < 0, otherwise the system would have multiple roots 
(1 w,~ = 1~~1). Thus I can have the form I = (o,l,--1.1) or 1: (&I, -1, -1). apart from the sign. 

Let us consider the first case (the second case can be tackled in exactly the same manner). 
we have 
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The integrals of the system are 

1, = 2P, - p2 - PS, I, = 2p4 + P3 - Pp. K = 0 - zo,p, 

Consider the invariant manifold 

9: I, = I, = ii = cl 

Q:=-*, Pl = + (Pr +PA p: = p3 +2p, 

For the remaining variables we obtain on n 
-- 

6%' = (1/2lA I I/k', + P,)Ps - 2 I R I I/G) ~/PI + 2~4 
PO' = 2 I B I I/Iv& ws + 2P4) 

If IAl>lQlEI r then the system has an increasing solution in the form of a ray 

and when IA /<~/ZIBI, there is no such solution. 
Let us consider the function 

F = (VP,- lG)l IBI 
We have -- 

dF/dt = (l/i;; + V’p, - k” I/P, + Pr) I/Pa + 2P, >, 

(1 - k*) (I/p, + I/,aj lf~t f 2~4: k, = I A I /(1/T I EJ I) < i 
therefore P is a Chetaev function. 

We have here used the inequality a -+ b- k*vaz+ b*>,+ (l- k*)(a+b). 

3. On the non-essential nature of the higher-order terms. The results of 
Sect.2 imply that the instability in the model systems in question appears as a result of: a) 
the presence of the increasing solution in the form of an invariant ray, or b) the presence 
of the increasing solutions whose form is unknown and whose existence follows form the exist- 
ence of the Chetaev function. 

The proof of the non-essential nature of the higher-order terms was studied in detail 
for the case a) in e.g. /3/, and is not given here. 

In the case b) the situation is less clear. In proving that the higher-order terms are 
not essential we can use the same Chetaev function as in the model systems. Since cases 1) 
and 3) in Sect.2 are the same, we shall give the proof only for one of them, namely for the 
case where the two-frequency and three-frequency resonances are linked to two frequencies. 

The system in question is identical in its principal terms with system (2.1). Let us 
rewrite it, expanding the right-hand sides in a Taylor series near the point 

3-t I A I 
QlO=---, Q,L2# 

We obtain 

I&' = - $$ (PI + PS) QI + 0 (r/6 I Q I*) + 0 (~1 

(P (p, Q) = 0 (p"/' I $ 1) + 0 (~‘1, dt, = dfl I B I, A, = A/ I B I) 

The variable changes in this section are not canonical. 
Let us introduce the following spherical coordinates for the variables Pj : pt= R sin29,, 

1,1 = 2R cos 2 O1 sin* E$, ps = *i,R cos? e1 co@ 9* . This yields 

dR.dr = n (R, 9.J -c 0 (R (f 0, I + 1 Q I)) + 0 (R”‘) 

d% dT = G, (e&l -I- 0 (1 0 1 + Itc’ 1) + o (1/T) 

de,,dr = - (21/%3) (1 + l/z] A, J, sin ee cos ezel + 0 (I er 19 + 
IQI);ow% 

(3.1) 

d+,ldr = -‘I”1 I A, IQ, + 0 (I 13~ 1% j 1 Q 12) + 0 (1/A) 

o”4.1 - 
dr =- v 

T (~052 es j 3 k+ 8:) 
? ain &cos 0: + 0 (I 81 I* + I Q I9 + 0 (t/W 

n = 41.3 R sin e2 (I A, 1 sin 8, + cos o,il/Zi) 
G, = (3'VZj ((2 I A, 1 /1/j) sin e2 cos 8, - Ii3 COG’- e,) 

Here we have made the change of variable dr=v/Tidt, which is valid provided that 

St-R(t)dt 
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diverges. In the present situation this is true, and it follows for example, from the follow- 
ing lemma. co 

Lemma. The integral 5 v/R(t)dl diverges on any solution R (t), R(O)>0 of the equaticn 
0 

dR/dt = R”” II (9 (t)), 1 n / < _pz 

We recall that when IA,/<1 , then. the model system has no increasing ray and this implies 
that there is no stationary point in the angular system. 

Let the manifold 

R = {R, 0, q: 18, I + I-& I + I& I < ev R <R”v 0 < 02 d n/2) 

where Q is invariant with respect to system (3.1); the trajectories only enter this region. 
Let us consider the function 

Calculating dFldr on R we obtain 

dF/dr = ) A, ( R [i - pz -t_ 0 (r/ii)] > 0 

This implies that Q,F is a Chetaev pair of the first kind and the theorem is proved. 

4. A theorem on the stability of the systems close to the critical systems 
in question. Let us consider a system with the Hamiltonian 

H (2, Y) = Ho (2. Y) + aH, (2, Y), H (0, U) = 0 (1.1) 

Here H(z,y) is a smooth function and the expansion in a Taylor series begins with the 
second-order terms. Let H0 (2, y) be the Hamiltonian of one of the critical cases discussed 
above. 

Theorem. Let a system corresponding to the Hamiltonian Ho be unstable when z = I). Then 
for every a(lai<~) a solution ~~(1) of system (4.1) exists for which 1 u,(O)~<~~q”,~up~~,, 

I ua(t)l>b (b is independent of a),~.=l. 
The proof of the existence of z= i is standard /3/ and will not be given here. The 

proof of the fact that index cannot be improved upon is as follows. We choose a perturbation 

a[[, (X? Y) so that the resonance relations are satisfied apart from I:=:=:-. Then a 
positive integral exists (of a resonance-free problem) acting in the complete e-neiqhbourhood 
of the zero. Consequently a "patch" R (da -z) exists, and this guarantees that the index 5 = 1 
cannot be improved. 

1. 

2. 

3. 

4. 

5. 
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